C-2060

Fulflo[®] 336 Pleated Cartridge

Pleated cartridge construction improves filtration efficiency, dirt holding capacity and flow rates

Parker's Fulflo[®] Pleated 336 size filter cartridges provide highly efficient removal of solid contaminants from a variety of petrochemical, refinery and oilfield applications. Cartridges are manufactured from premium grade phenolic impregnated cellulose and polypropylene blown media. These structures provide superior removal efficiency. The cartridges are available in 3 μ , 10 μ , 12 μ , 22 μ , and 100 μ pore sizes. (99.98% removal; β = 5000)

Benefits

- Retrofits housings that use 3" OD x 36" long SOE cartridges with spring
- High surface area
- Low pressure drop
- Materials compatible with most applications
- High filtration efficiency
- High dirt-holding capacity
- Rugged construction

Applications

- · Petrochemical
- Refineries
- Oil Fields
- Produced Water
- Amines
- Glycols

Fulflo[®] 336 Pleated Cartridges

Specifications

Materials of Construction:

Cellulose: Phenolic impregnated cellulose media Polypropylene support core and end caps (Steel core optional) Buna-N gasket 316 st. stl. spring Polypropylene: Filter media and support layers – Poplypropylene Polypropylene support core and end caps (steel core optional)

Buna-N gasket 316 st. stl. spring

Recommended Operating Conditions: Maximum 33 GPM per cartridge

Polypropylene Support:

Maximum Temperature @ 10 PSID (0.7 km/cm²): 200°F (93°C) Maximum Temperature @ 35 PSID (2.5 km/cm²): 125°F (52°C) Maximum Temperature @ 60 PSID (4.2 km/cm²): 75°F (24°C) Optimum Change Out at ambient temp.: 35 PSID (25 km/cm) **Steel Support:** Maximum Temperature: 250°F (121°C) Maximum AP: 50 PSID (3.5 km/cm²)

Maximum ΔP : 50 PSID (3.5 km/cm²) Optimum change Out ΔP : 35 PSID (2.5 km/cm²)

Dimensions:

Length: 34-3/4 in (883 mm) w/o spring: 37-1/8 in (943 mm) with spring OD: 3 in (76 mm) ID: 1-9/16 in (40 mm)

Length	Length Factor		
336	4		
	Flow		
Cartridge	Factor		
PPC005	0.090		
PCG020	0.026		
PCC2	0.017		
PCC10	0.002		
PCC30	0.001		
PCC60	0.005		

Cartridge	ß=5000 Absolute	ß =1000 99.7%	ß =100 99%	ß=50 98%	ß@2 micron
PPC005	3	2.8	0.5	<0.5	400
PCG020	10	8.6	1.8	0.9	110
PCC2	12	10	3.2	1.7	64
PCC10	22	18	6	3.2	35
PCC30	100	85	11	4.5	25
PCC60	150	90	30	15.0	10

Flow Rate and Pressure Drop Formulas Flow Rate (gpm) = Clean ΔP x Length Factor

Viscosity x Flow Factor

Clean DP = Flow Rate x Viscosity x Flow Factor Length Factor

- 1. Clean ΔP is PSI differential at start.
- Viscosity is centistokes. Use Conversion Tables for other units.
- Flow Factor is △P/GPM at 1 cks for 10 in (or single).
- 4. Length Factors convert flow or ΔP from 10 in (single length) to required cartridge length.

Beta Ratio (ß) =

Upstream Particle Count @ Specified Particle Size and Larger

Downstream Particle Count @ Specified Particle Size and Larger

Percent Removal Efficiency = $\left(\frac{\beta - 1}{\beta}\right)$ 100

Ordering Information

Specifications are subject to change without notification. *Viton is a registered trademark of E.I. DuPont de Nemours & Co., Inc © 2007 Parker Hannafin Process Advanced Filtration Inc. All Rights Reserved SPEC-C2060-Rev. A 01/08

ENGINEERING YOUR SUCCESS.